As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
偏见标志着病史,导致影响边缘化群体的不平等护理。观察数据中缺失的模式通常反映了这些群体差异,但是算法对群体特定缺失的算法公平含义尚不清楚。尽管具有潜在的影响,但归因通常还是被遗忘的预处理步骤。充其量,从业者通过优化整体绩效来指导选级选择,而忽略了这种预处理如何加强不平等。我们的工作通过研究插补如何影响下游算法的公平性来质疑这种选择。首先,我们提供了临床存在机制与特定组的遗失模式之间关系的结构化视图。然后,通过模拟和现实世界实验,我们证明了插补选择会影响边缘化的群体绩效,并且没有归因策略始终降低差异。重要的是,我们的结果表明,当前的做法可能危害健康平等,因为在人口层面上类似地执行插补策略可能会以不同的方式影响边缘化的群体。最后,我们提出了缓解因机器学习管道的忽视步骤而导致的不平等的建议。
translated by 谷歌翻译
异常气道扩张,称为牵引支气管扩张,是特发性肺纤维化(IPF)的典型特征。体积计算断层扫描(CT)成像捕获IPF中逐渐变细的丢失。我们假设气道异常的自动化量化可以提供IPF疾病程度和严重程度的估算。我们提出了一种自动化计算管道,系统地将气道树木从基于深度学习的气道分割中划分到其裂片和世代分支,从而从胸部CT获得气道结构措施。重要的是,透气阻止通过厚波传播的杂散气道分支的发生,并通过图表搜索去除气道树中的环,克服现有气道骨架算法的限制。在14名健康参与者和14名IPF患者之间比较了透气段(跨空间)和透气曲线曲线之间的逐渐变化。 IPF患者中,Airway interberering显着降低,与健康对照相比,Airway曲线曲调显着增加。差异在下叶中最大标记,符合IPF相关损伤的典型分布。透气是一种开源管道,避免了现有的气道定量算法的限制,并具有临床解释性。自动化气道测量可能具有作为IPF严重程度和疾病程度的新型成像生物标志物。
translated by 谷歌翻译
A Digital Twin (DT) is a simulation of a physical system that provides information to make decisions that add economic, social or commercial value. The behaviour of a physical system changes over time, a DT must therefore be continually updated with data from the physical systems to reflect its changing behaviour. For resource-constrained systems, updating a DT is non-trivial because of challenges such as on-board learning and the off-board data transfer. This paper presents a framework for updating data-driven DTs of resource-constrained systems geared towards system health monitoring. The proposed solution consists of: (1) an on-board system running a light-weight DT allowing the prioritisation and parsimonious transfer of data generated by the physical system; and (2) off-board robust updating of the DT and detection of anomalous behaviours. Two case studies are considered using a production gas turbine engine system to demonstrate the digital representation accuracy for real-world, time-varying physical systems.
translated by 谷歌翻译
Learning to predict masked tokens in a sequence has been shown to be a powerful pretraining objective for large-scale language models. After training, such masked language models can provide distributions of tokens conditioned on bidirectional context. In this short draft, we show that such bidirectional conditionals often demonstrate considerable inconsistencies, i.e., they can not be derived from a coherent joint distribution when considered together. We empirically quantify such inconsistencies in the simple scenario of bigrams for two common styles of masked language models: T5-style and BERT-style. For example, we show that T5 models often confuse its own preference regarding two similar bigrams. Such inconsistencies may represent a theoretical pitfall for the research work on sampling sequences based on the bidirectional conditionals learned by BERT-style MLMs. This phenomenon also means that T5-style MLMs capable of infilling will generate discrepant results depending on how much masking is given, which may represent a particular trust issue.
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译
Traditional screening practices for anxiety and depression pose an impediment to monitoring and treating these conditions effectively. However, recent advances in NLP and speech modelling allow textual, acoustic, and hand-crafted language-based features to jointly form the basis of future mental health screening and condition detection. Speech is a rich and readily available source of insight into an individual's cognitive state and by leveraging different aspects of speech, we can develop new digital biomarkers for depression and anxiety. To this end, we propose a multi-modal system for the screening of depression and anxiety from self-administered speech tasks. The proposed model integrates deep-learned features from audio and text, as well as hand-crafted features that are informed by clinically-validated domain knowledge. We find that augmenting hand-crafted features with deep-learned features improves our overall classification F1 score comparing to a baseline of hand-crafted features alone from 0.58 to 0.63 for depression and from 0.54 to 0.57 for anxiety. The findings of our work suggest that speech-based biomarkers for depression and anxiety hold significant promise in the future of digital health.
translated by 谷歌翻译
This paper addresses the kinodynamic motion planning for non-holonomic robots in dynamic environments with both static and dynamic obstacles -- a challenging problem that lacks a universal solution yet. One of the promising approaches to solve it is decomposing the problem into the smaller sub problems and combining the local solutions into the global one. The crux of any planning method for non-holonomic robots is the generation of motion primitives that generates solutions to local planning sub-problems. In this work we introduce a novel learnable steering function (policy), which takes into account kinodynamic constraints of the robot and both static and dynamic obstacles. This policy is efficiently trained via the policy optimization. Empirically, we show that our steering function generalizes well to unseen problems. We then plug in the trained policy into the sampling-based and lattice-based planners, and evaluate the resultant POLAMP algorithm (Policy Optimization that Learns Adaptive Motion Primitives) in a range of challenging setups that involve a car-like robot operating in the obstacle-rich parking-lot environments. We show that POLAMP is able to plan collision-free kinodynamic trajectories with success rates higher than 92%, when 50 simultaneously moving obstacles populate the environment showing better performance than the state-of-the-art competitors.
translated by 谷歌翻译
Recent trends in language modeling have focused on increasing performance through scaling, and have resulted in an environment where training language models is out of reach for most researchers and practitioners. While most in the community are asking how to push the limits of extreme computation, we ask the opposite question: How far can we get with a single GPU in just one day? We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU. Aside from re-analyzing nearly all components of the pretraining pipeline for this scenario and providing a modified pipeline with performance close to BERT, we investigate why scaling down is hard, and which modifications actually improve performance in this scenario. We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings. Through the lens of scaling laws, we categorize a range of recent improvements to training and architecture and discuss their merit and practical applicability (or lack thereof) for the limited compute setting.
translated by 谷歌翻译